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A review of recent work and new developments are presented for the penalty-function, 
finite element formulation of incompressible viscous flows. Basic features of the penalty 
method are described in the context of the steady and unsteady Navier-Stokes equations. 
Galerkin and “upwind” treatments of convection terms are discussed. Numerical results 
indicate the versatility and effectiveness of the new methods. 

1. TNTR~DUCTI~N 

The finite element method (FEM) is an established numerical technique which 
now enjoys widespread use in solid and structural mechanics. The main attributes 
of the FEM are its ease in handling very complex geometries and the ability to 
“naturally” incorporate differential-type boundary conditions. In addition, the 
method possesses a rich mathematical structure and, in many cases, it can be shown 
that “optimal” error estimates hold (see, for example, Strang and Fix [82]). 

More recently, the FEM has been used increasingly for problems of fluid mechanics 
(see, for example, [lo, 23, 24, 26, 711). Nevertheless, in convection dominated 
situations, and in particular for the Navier-Stokes equations, the FEM has not 
achieved the level of success of existing finite difference methods, such as those 
described in [l, 42, 701. We believe there are three main reasons for this: 

First, all the experience in application of the FEM to problems of solid and 
structural mechanics involves symmetric operators. Until just recently, virtually no 
theoretical attention was paid to the fact that convection operators are nonsymmetric, 
and that, perhaps, basically new techniques would need to be developed for effectively 
treating them. 

Secondly, most finite element researchers engaged in solving the Navier-Stokes 
equations seem to be infatuated with the use of exotic and/or “higher-order” 
elements, and “nonlinearly implicit,” time-stepping algorithms. On small problems, 
these approaches often exhibit greater accuracy than do simpler computational 
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schemes. However, it is our opinion that for large problems, and in particular for 
3-dimensional problems, the storage and computational effort engendered make such 
approaches cost-ineffective and noncompetitive with existing difference methods. 

Thirdly, finite element techniques for handling kinematic constraints, such as 
incompressibility, have often lead to significant computational complexity, have been 
poorly understood and have not always performed well in practice. 

In this paper, we review recent work, and present new techniques, aimed at devel- 
oping efficient and accurate methods for solving the incompressible Navier-Stokes 
equations. 

The main theme of the paper is the penalty-function formulation of the in- 
compressibility constraint. The success of the penalty-function is easy to understand: 
It leads to the simplest, effective, finite element implementation of incompressibility. 
ln describing the penalty method, we find it necessary to quote many references 
outside the finite element fluid mechanics literature, as only a small number of papers 
have been written on penalty formulations of the Navier-Stokes equations. 

We also address ourselves to the other main considerations in developing methods 
for solving the Navier-Stokes equations; namely, effective treatment of convection 
terms, and efficient elements and solution algorithms. 

Results obtained for the methods described herein indicate, we believe, that it is 
now possible to overcome the three deficiencies enumerated above, while retaining 
all the attributes of the FEM. 

The remainder of this paper is outlined as follows: In Section 2, we describe 
pertinent features of the penalty/finite element formulation in the context of a simple 
class of problems: Stokes flow. In Section 3 we consider the steady Navier-Stokes 
equations. New ideas for treating convection operators are discussed in Section 4. 
Transient algorithms are described in Section 5 and sample results, illustrating the 
accuracy and versatility of the new techniques, are presented and compared with 
available data in Section 6. In Section 7, we summarize the present developments 
and make suggestions for further research. 

2. STOKES FLOW 

2.1. Preliminaries 

Let Sz be an open set contained in [Wn, n 3 2, with piecewise smooth boundary r. 
The closure of a set is denoted by a superposed bar (e.g., D is the closure of sz>. 
Vector and tensor fields defined on S are written in boldface notation. The Cartesian 
components of vectors and tensors are written in the standard indicial notation. 
For example, Xi and ui are the ith components of the position vector x and velocity 
vector II, respectively. We employ the summation convention on repeated indices 
i, j, and k only (e.g., tii = t,, + tzz + **. + t,,). A comma is used to denote partial 
differentiation (e.g., Ui,j = aui/axj , the velocity gradients). 

Let L, denote the space of Lebesgue square-integrable functions defined on Q, 
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and let H1 denote the space of &-functions whose partial derivatives are also in L,. 
The L, and If1 norms are defined by (resp.) 

II a iI1 == [Jo(uu + u,~uJ cK~]~‘~. (2.2) 

Let L2 (Hl, resp.) denote the space of vector fields whose components are in L, 
(Hl, resp.). The L, and H1 norms are defined by (resp.) 

Throughout we shall consider flows of a Newtonian fluid whose constitutive 
equation is given by 

fjj = -Psij -t 2pu(i,j) 2 (2.5) 

where tij denotes the Cauchy stress tensor; p is the pressure; Sij is the Kronecker 
delta; p > 0 is the dynamic viscosity; and ZQ) = (u<,~ + uJ2, the symmetric 
part of the velocity gradients. Furthermore, we shall assume the flow to be incom- 
pressible, i.e., 

ui,i = 0 (2.6) 

2.2. Prescribed Data 

Let r’ and I’, be subsets of r which satisfy the following conditions: 

(2.7) 

(2.8) 

We assume the following functions are given: 

+2--t UP (body force vector), (2.91 

f”: rs + R” (velocity vector), (2.10) 

R: rR - [w” _ w (traction vector). (2. I 1) 

More general boundary conditions than those considered in (2.10) and (2.11) may be 
formulated. These engender no essential difficulties, however, they encumber the 
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presentation somewhat and thus to simplify matters we have chosen not to consider 
them in this exposition. 

2.3. Formal Statement of the Boundary- Value Problem 

Find u: a + W and p: 8 --f R such that 

tij,i --J; :_ 0 on Q, (2.12) 

ui,i = 0 on Q, (2.13) 

4 = ,yi on r 
a’ 

(2.14) 

tijnj = bi on rh, (2.15) 

where tfj is given by (2.5). 

Remarks. 1. If r, = o, then we require a consistency condition emanating 

from (2.13) and (2.14):viz., 

oz - 
! u<,~ dL? 
R 

(2.16) 

In this case, p is determined up to an arbitrary constant. 

2. It is well known that under suitable hypotheses the boundary-value problem 
of Stokes flow is well posed (see, e.g., Temam [85]). 

2.4. Penalty-Function Formulation 

In the penalty-function formulation of Stokes flow, the constitutive equation is 
replaced by 

in which 

t!?) _ -p’“‘&. c 24?).) 13 2) 1,3 (2.17) 

P (A) _ -Au:; . 1 (2.18) 

where X > 0 is a parameter. Furthermore, the incompressibility condition is dropped. 
The boundary-value problem of the penalty function formulation is stated as follows: 

Find II(“): 0 --f W such that 

t$ + fi = 0 on J2, (2.19) 

u!“’ = z Y’1 on r s,’ (2.20) 

I!?) = 4. t .? on rA, (2.21) 

where tji) is given by (2.17). 
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Remarks. 1. The convergence of the penalty-function solution to the Stokes 
flow solution has been proved by Temam [85]. A sketch of the main steps of the 
proof is given as follows (consult [85] for further details): Equation (2.12) is subtracted 
from (2.19) to obtain 

pL(u?) - Ui),jj t (ptA’ - P),j = 0. (2.22a) 

This result is multiplied by uiAf - ui and integrated over Sz. Integration by parts, 
use of the divergence theorem and boundary conditions, along with a standard 
inequality (i.e., 2ab < a2 + b2), leads to 

P II 
1 1 

” (A) - u iI; + Fj=j i/p II2 < zi; l/P !lZ. (2.22b) 

It follows from (2.22b) that, as h--f co, uCA) + u in H1, and consequently (2.22a) 
may be used to argue that p(*) +p in L2 . If h is selected sufficiently large then II(~) 
and pcA) differ negligibly from u and p, respectively. The advantages of the penalty- 
function formulation are that the additional unknown p is eliminated and so is the 
necessity of satisfying the incompressibility condition. In numerical practice this 
leads to considerable simplification. 

2. The equations of Stokes flow are identical to the equations of classical, 
isotropic, incompressible elasticity in which u is interpreted as the displacement 
vector. Likewise, the penalty equations are identical to classical, isotropic, compressible 
elasticity, in which X and p are interpreted as the Lame parameters. Thus the penalty 
approach in elasticity amounts to approximating an incompressible medium by a 
slightly compressible 0ne.l 

The physical interpretation in fluids is different. Here it is the mass conservation 
equation which is being approximated and the associated errors amount to net 
fluid loss or gain (see, e.g., Hughes et al. [51]). 

3. In the sequel we deal only with the penalty-function formulation. Thus it is 
notationally convenient to omit the A superscripts in all subsequent developments. 

2.5. Weak Formulation 

Let 

V = {w E H1 / w = 0 on r’}. (2.23) 

(Eq. 2.23 reads: “V is the space of all H1-functions which vanish on ry .“) V is often * 
called the space of weighting functions, or variations. 

1 The use of penalty methods in solid mechanics is now widespread; see, for example, [29, 37-41, 
43, 46-48, 50, 53, 54, 58-60, 67, 72, 73, 84, 93, 941. 
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Let 9 denote a given H1-extension ofg; that is, 2 E H1 and u 

(2.24) 

The weak form of the boundary-value problem is stated as follows: 
Find u = w + 2, w E V, such that for all i? E V 

j (hWj,jiCi,i + 2pW(i,j)W(i,j)) d!J = j /fiWi dQ + j AiZi dI’ 
n 0 r, 

Remark. Under appropriate smoothness hypotheses, it is a simple exercise to 
verify that the solution of the weak formulation is identical to the solution of (2.19)- 
(2.21). 

2.6. Galerkin Formulation 

Let Vh be a finite-dimensional subspace of V; Vh is to be thought of as a member 
of a collection of subspaces Y” = {Vh}, dense in V and parameterized by h, the 
“mesh parameter.” 

Let 2” denote an approximation of 2 which converges to > as h --f 0. 

The balerkin counterpart of the weik formulation is give; as follows: 
Find uh = wh + >h, wh E Vh, such that for all Gh E Vh 

j (XW;,~W;,~ + 2/~wf&ij;~,~,) dsZ = j fiiWih dQ + j RiiCi’k dL’ 
R R rF5 

2.7. Matrix Problem 

The domain D is discretized into nonoverlapping subregions called “elements.” 
The eth element domain is denoted Sle and its boundary is denoted P (see Fig. 1). 
(In general, an “e” superscript indicates a quantity referred to the eth element.) 
Associated with the discretization is a set of nnp “nodal points.” The position vector 
of the Ath node, A = 1, 2 ,..., nnp , is denoted x, . Let JY = {I, 2 ,..., nnp}, the set 
of nodal indices, and let XB = {A E M / xA E I’?}, the subset of nodal indices corre- 
sponding to boundary nodes at which velocity ys prescribed. The “shape function” 
associated with node A is denoted NA ; the shape functions satisfy the relation 
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DISCRETIZATION: 

FIG. 1. Finite element spatial discretization. 

NA(XB) = aA, . The solution of the Galerkin problem may be expressed in terms 
of the shape functions as follows: 

U’h = z c NAGA , (2.27) 
AtM-JV 

I 

;i” = 1 NA~~A > (2.28) 
A&+- 

,B 

where vdA is the ith velocity component at node A and 

yia = &A). (2.29) 

As can be seen by (2.29), the approximation of gi assumed in (2.28) is one of nodal 
interpolation via the shape functions. 

Substitution of (2.27) and (2.28) into (2.26) gives rise to the matrix problem 

where 
Cv =F, (2.30) 

c = IGOI, (2.31) 

v = {v,}, (2.32) 
F = {Fp]. (2.33) 
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The indices P, Q above take on the values 1,2,..., n eq , where neq refers to the number 
of equations in the “global” system. The equation numbers are stored in a “destination 
array,” denoted ID, and defined as follows: 

P =-~ ZD(i, A) 
7 

T 

\ 
equation “global” node 
number number 

degree-of-freedom 
number (1 < i < n) 

(2.34) 

Nodal velocity components which are prescribed (i.e., “f-type” boundary conditions) 
are assigned equation number zero and are not includgd in the global ordering. 

The matrix C is symmetric, positive definite, and possesses a band-profile structure 
(see Fig. 2). Very efficient solution of (2.30) is facilitated by so-called “active-column” 
equation solvers [6, 17, 64, 65, 83, 89,901 in which zeros outside the profile are neither 
stored nor processed. 

FIG. 2. Symmetric matrix possessing a band-profile structure, 

In a finite element computer program, it is most convenient to form the arrays C 
and F in an element-by-element fashion. In this regard we may write 

c = 2 (c”), F = 2 (f”), (2.35) 
f5=1 e=1 

where A denotes an “assembly operator” whose function is to add elemental contri- 
butions (namely ce and f”) to the appropriate locations of C and F, and nel is the 
number of elements. It can be shown that the element arrays may be defined as 
follows: 
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f’ = ff;,‘!, (2.36) 

c 
CM = e,‘cfibej , p ==n(a- l)+i, q = M(b - 1) + j, 1 -< a, b < nen , 

(2.37) 

cP ~ 
Oh ~ j 

R’ 
(B,“)T DABbe ds2 + j (B,,P)T DUBbe do. 

.t?e 
(2.38) 

Ys p = yj(Xbe) if X~~E rg, 
(2.40) 

== 0 if xbe + rf. 

In the above, a superscript T denotes transpose; n en is the number of element nodes; 
nee = &n * n is the number of element equations; a and b are element (“local”) node 
numbers; p and q are element (“local”) equation numbers; N,” is the shape function 
associated with node a of the eth element; and ei is the ith canonical basis vector 
of W, e.g., 

(n = 2) 

1 
e, = 

ii 
10 

0' e2 = (, 
I 

(n = 3) 

(2.41) 

(2.42) 

The arrays B,“, DA , and D, for the cases of most practical interest are given as follows: 

(n = 2: rectilinear; dsZ = dx, dx, .) 

N” 0’ Cl.1 

B"= 0 0 N,">, 

N" X.1. ,I ,2 

r2 O Ol 

2 The reader is reminded that commas denote partial differentiation (e.g., N;,, aiv,yax,). 

(2.43)2 

(2.44) 
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(n = 2: axisymmetric; dQ = 27rxl dx, dx, , where x1 
drical coordinates) 

r and x2 = z are cylin- 

(2.46) 

(2.47) 

(2.48) 

For the axisymmetric case, one need replace all Cartesian coordinate representations, 
such as (2.17) and (2.18), by their counterparts in cylindrical coordinates (see, e.g., 
Batchelor [5]). 

(n = 3: rectilinear; dQ = dx, dx, dx, .) 

B,,” 

DA 

DU 

rr 
n,3 0 X.1 

re 
0,2 N’ 0 Cf.1 1 

‘1 1 1 0 0 0’ 
111000 
I 11000 
000000 
000000 
.o 0 0 0 0 0, 

‘2 0 0 0 0 0’ 
020000 
002000 
000100 
000010 
-0 0 0 0 0 1 

(2.49) 

(2.50) 

(2.51) 



FINITE ELEMENT ANALYSIS 11 

2.8. Numerical Integration 

The integrations appearing in (2.38) and (2.39) are carried out with the aid of 
numerical integration formulas. In most finite element work it is only necessary to 
use a “sufficiently accurate” integration rule (see [91] for details). However, in the 
penalty method, it is crucial to “underintegrate” the h-term in (2.38). The reasons 
for this have been discussed at length in [60] so we only provide a brief summary here. 

By virtue of (2.38), we may write 

c = c, + c, , (2.52) 

where Cn and C, are proportional to h and p, respectively. It is apparent that if C, 
is nonsingular, then v + 0 as h + co. Consequently, C, must be singular so that the 
penalty method works [22]. It turns out that virtually all commonly used conforming3 
finite elements result in nonsingular C, when exact integration is performed. To 
singularize CA one need only lower the order of the X-term integration rule. The rank 
of the matrix C is retained by employing a sufficiently high-order integration on the 
p-term in (2.38). (This follows from a Korn inequality; see [20]). An example is 
illustrative of these ideas: 

EXAMPLE. Consider the 4-node, bilinear, isoparametric quadrilateral element. 
For this element it is standard to employ 2 x 2 Gauss-Legendre integration. However, 
this rule renders C, nonsingular and thus fails in our applications. On the other hand, 
a l-point Gauss-Legendre rule on the h-term results in CA being singular. The 2 x 2 
rule is retained on the p-term to insure nonsingularity of C. This element, suggested 
and employed in [51, 521, has proven to be the simplest effective one for use in the 
penalty function formulation. 

The following facts may be proved for this element in the rectilinear case [43, 601: 

(i) As X --f co, u:,~ + 0 at the origin of the element natural coordinate system. 

69 (Jne ~f,~ d.QY(.fm d-Q) -+ 0 as h --f co (“incompressibility in the mean”) 
and furthermore the pressure at the origin, computed via (2.18), is the mean pressure 
for the element. 

Remarks. 1. When a quadrature rule of lower order than the “standard” one 
is employed, this is called reduced integration. If all terms4 employ the same reduced 
integration, this is called uniform reduced integration; if reduced integration is used 
on some terms while standard integration is used on others (as in the above example), 
this is called selective reduced integration. Selective integration procedures are subject 
to an “invariance criterion” [48]. In the present applications, this condition requires 
that both C, and C, generate quadratic forms which are invariant with respect to 
change of reference frame. It is a simple exercise to show that this is the case. 

3 A conforming, or compatible, finite element, in the present context is one which leads to the 
members of V” being continuous functions. 

4 In the present context, we mean the X and f~ terms in (2.38). 
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2. Studies have been undertaken to determine the most effective elements and 
quadrature schemes for use with the penalty method. So far, these efforts have been 
largely empirical as no rigorous general theory yet exists. However, an heuristic 
theory [60] has been remarkably accurate in predicting the behavior of elements and 
integration schemes. Briefly, the theory suggests that the most effective elements in 
applications of the type considered here are the so-called “Lagrange” isoparametric 
elements with appropriate selective integration schemes. These elements, for the 
2-dimensional case, are schematically illustrated in Fig. 3. Triangular elements and 
“serendipity” quadrilateral elements are predicted to exhibit inferior behavior, 
which has been confirmed numerically [59]. 

shape shape 
functions functions 

blllnear blllnear blquadroilc blquadroilc blcutx blcutx 

X-term X-term I point I point 2x2 2x2 3x3 3x3 

p-term p-term 2x2 2x2 3x3 3x3 4x4 4x4 

FIG. 3. Selective Gauss-Legendre integration rules for 2-dimensional isoparametric Lagrange 
elements. 

3. To each element/integration scheme used in the penalty-function formula- 
tion corresponds a “mixed finite element” method based upon the velocity-pressure 
formulation of Stokes flow, namely (2.12)-(2.15). General “equivalence theorems” 
of this type, which are also applicable to nonlinear situations, have been proven in [60]. 
The identification of penalty and mixed methods facilitates an “interpretation” of the 
pressure field in the penalty case. It turns out that in all cases the pressure field is to 
be viewed as discontinuous across element boundaries, the velocity field being 
continuous. The appropriate points at which to sample the pressure are determined 
to be the integration points of the rule used to integrate the h-term in (2.38). 

4. When the 4-node, selectively integrated, bilinear element, discussed pre- 
viously, is used in axisymmetric analysis, the property of “incompressibility in the 
mean” is lost. Nevertheless, the element is still convergent. 

The following alternative formulation produces a 4-node quadrilateral element 
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which possesses the mean incompressibility property [66]. In the definition of c& 
(Eq. 2.38) replace the h-term by 

where 

B,” = j Brie Ai’. 
Rt’ 

(2.54) 

The integral above should be calculated exactly; analysis of the integrand reveals 
that the 2 x 2 Gauss-Legendre rule is suthcient in this regard. The 2 x 2 rule should 
be maintained for the p-term in (2.38). The element mean pressure may be determined 
by computing the mean value of 

p = -qzl:ll + u;,, + Ul”/X,). (2.55) 

Again, the 2 x 2 rule may be used effectively. 

5. In programming the element arrays every effort is made to minimize compu- 
tations. In this regard we note that there is considerable sparseness and redundancy 
in the “BTDB” products of (2.38) all of which may be taken advantage of in coding. 
For useful ideas along these lines, and good-quality software, see [83]. 

2.9. Selection of Penalty Parameter A 

In the penalty method the question naturally arises: “How does one select the 
value of h?” Clearly, X must be large enough so that the compressibility and pressure 
errors are negligible, yet not so large that numerical ill conditioning ensues. 
Dimensional analysis reveals that, for Stokes flow, /\ should be picked according to 
the relation5 

x = c/L, (2.56) 

where c is a constant which depends only on the computer word length and, in 
particular, is independent of the mesh parameter h. Numerical studies reveal that for 
floating-point word lengths of 60 to 64 bits, an appropriate choice of c is 10’. (This 
choice seems to be problem independent.) 

2.10. Pressure Smoothing 

As was mentioned previously, the pressure field is to be viewed as discontinuous 
from element to element. In fact, all velocity derivatives for isoparametric elements 
are in general discontinuous on element boundaries. Thus, for plotting purposes, 
it is desirable to employ a smoothing procedure, which redefines the field under 
consideration in terms of the shape functions NA . 

5 This criterion needs to be generalized to be applicable to the full Navier-Stokes equations; see 
Section 3.2. 
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With specific reference to the pressure, there is at least one other reason for 
employing a smoothing procedure. It has been shown that, in certain situations, 
discontinuous-pressure, mixed-method finite elements exhibit a rank deficiency in 
the assembled pressure equations [68]. By the equivalence results of [60], “problems” 
are also to be expected with the pressure field of the penalty function formulation. 
These problems typically manifest themselves as pressure oscillations. For example, 
if 4-node, quadrilateral elements are employed in a square mesh, with an even 
number of square elements in each direction, subjected to all velocity boundary 
conditions, then a “checkerboard” pressure oscillation is produced. (This phenomenon 
apparently also afflicts the MAC finite difference method [70].) Despite the pressure 
oscillations, the velocity field remains good. From the standpoint of error analysis 
these developments lead us to make the following conjectures: (i) Optimal L,-con- 
vergence rates in velocity hold for the selectively-integrated Lagrange elements;6 
(ii) H1-convergence is provable only if explicit account is taken of a filtering procedure 
which removes the “checkerboard mode,” or analogous pathologies. 

Fortunately, smoothing procedures of a least-squares type [36] seem to perform 
the necessary filtering as a by-product. A comprehensive study of such techniques 
has been performed by Lee et al. [56]. The methods we have been using for constant- 
pressure elements, which involve slight modifications of schemes proposed in [56], 
are described below. 

Let the discontinuous pressure field be written as 

p = ; pep, 
e=l 

(2.57) 

where p” is the element mean pressure and I,!J” is the eth element “characteristic 
function,” i.e., 

ICI”(x) = 1 if xEQne 

= 0 if x4.@. 

The smoothed pressure is written 

j = x- PAN,. (2.59) 

(2.58) 

A=1 

The standard least-squares procedure gives rise to the following matrix problem: 

Yfi = P, (2.60) 

where 

y = wael~ (2.61) 

6 = EIJ, (2.62) 

B Mercier [61] has achieved an L,-convergence proof of the 4-node element in a related situation 
by way of finite difference methods. 
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and 
P = {PA). (2.63) 

The indices A, B take on the values 1, 2,..., nnp . The construction of Y and P is 
performed in the usual element-by-element fashion, viz.,’ 

Y = ii (y”), 
Ql 

P = A (pq (2.64) 
e=1 P=l 

in which 

ye = Mbl~ (2.65) 

As it stands, the matrix Y is symmetric, positive-definite, and posesses a band- 
profile structure. Additional simplification may be engendered by replacing Y by an 
associated diagonal matrix.* This is done by approximating the first equation of 
(2.66); the procedures we use are summarized as follows: 

(n = 2; rectilinear case). The 2 x 2 product, trapezoidal, integration rule may be 
used to diagonalize ye, i.e., 

where 

(Jacobian determinant), 

(2.67) 

+I? 
xe = 1 Naexae, (2.69) 

a=1 

and 6, and va are the coordinates of node “a” in the element “natural” coordinate 
system. Applying the same integration scheme to the second equation of (2.66) yields 

Pll I3 = P7%z 2 %J. (2.70) 

Further simplification may be achieved by approximating je(t, , rla) in (2.67) and 
(2.70) by je(O, 0). (In the case when Qe is parallelogrammic, je is constant and no loss of 
accuracy is incurred by this procedure.) 

The 3-dimensional case is the straightforward generalization of the above, so we 
omit the details. 

’ The ‘assembly operators” in (2.64) are not the same as those used previously in (2.35). Here, 
no boundary conditions are taken account of and there is only one degree of freedom per node. 

8 Lee et nl. [56J have also found that higher accuracy is attained when Y is diagonal! 

581/30/r-z 
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(n = 2; axisymmetric case.) If we attempt to apply the above procedure in the 
axisymmetric case we encounter a difficulty due to the factor x1 (i.e., “r”) in the inte- 
grands. Along the x,-axis, x1 = 0, hence the trapezoidal integration technique 
produces a zero diagonal entry in Y. In this case we employ a “row-sum” diagonal- 
ization technique in which 

The above integration, which also suffices for the second part of (2.66) may be 
performed by either l-point or 2 x 2 Gauss-Legendre integration-the latter scheme 
being exact. 

The procedures described above render the formation, storage, and solution of 
the matrix equation (2.60) very efficient. The results produced tend to be very good 
at interior nodes, but leave something to be desired at boundary nodes. To improve 
upon the results a “correction” at each boundary node is performed. We describe 
the procedure used for 4-node elements with the aid of an example. 

Consider the mesh illustrated in Fig. 4a. The nodes are segregated into four groups. 
The boundary node corrections are carried out in the following steps in order: 

(a) Mesh 

(b) Typical non-corner (d 1 Typical internal 
boundary node corner node 

FIG. 4. Example mesh for 4-node element, pressure-smoothing algorithm. 

Step 1: noncorner, boundary nodes. A typical case of a noncorner, boundary 
node is depicted in Fig. 4b. It may be observed that the unaltered value of $A is 
actually a higher-order approximation to the pressure at the midpoint of the line 
joining nodes A and B (see Barlow [4]). Thus we redefine the $A by way of linear 
extrapolation, i.e., 

$A +- v,4 - I% (2.72) 
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Step 2: external corner nodes. A typical situation is depicted in Fig. 4c. The 
unaltered value of fiA is precisely the constant pressure pe, because the above pro- 
cedures reduce to “do-nothing” calculations at external corners. (If “checkerboarding” 
was occurring in the pe’s, the value of &, would be grossly in error.) In this case we 
employ linear extrapolation through nodes B, C, and D. i.e., 

where 
E, = LB 7 (xzc ~ XZD) X1A + cxlD ~ xlC> &A > 

e, = L, + (X,D - x2B) X1R + cxlB - xlD> %?A 9 

XD = LD + (XZB - xzc) XlA + (XlC - -%B) X2.4 3 

LB = X1CX2D - XlDX2C > 

Lc = .Y~DX~B - X~BXZD, 

L = L, + L, + L, . 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

Step 3: internal corner nodes. A typical configuration is shown in Fig. 4d. 
In this case the unaltered fiA is essentially a weighted average of the pe’s associated 
with the three elements which have node A in common. As in Step 2, if “checker- 
boarding” had occurred, the unaltered @A would be significantly in error. Again 
we use linear extrapolation; namely, (2.73)-(2.80). 

Slight generalizations of the above procedures may be used for smoothing pressures 
in higher-order elements. Vorticity data, for example, may be handled in the same 
fashion. 

3. STEADY NAVIER-STOKES EQUATIONS 

3. I. Penalty-Function Formulation 

The boundary-value problem of the penalty-function formulation is stated as 
follows: 

Find u: Q + [w” such that 

pujlli,j = fzj%j + fi on J2, (3.1) 

llj = yj on r Z’ (3.2) 

tiJnj = hj on rg, (3.3) 

where 
(3.4) 

(3.5) 

and p > 0 is the density-a given function of x. 
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Remark. We have experimented with several modifications of the convective 
momentum (i.e., left-hand side of (3.1)). In particular, we have added the “correction 
term” proposed by Temam [85], and also put the convective momentum in “conserv- 
ation form,” as is often favored by workers in finite differences [75]. On sample 
problems, all other things being equal, no discernible difference could be noted when 
compared with the simple expression in (3.1). 

3.2. Selection of the Penalty Parameter 

The criterion for selecting the value of the penalty parameter, h, in the present 
case is different from that for Stokes flow (cf. (2.56)). This is due to the presence 
of the convective momentum term which generally dominates the viscous term. 
The criterion for the Navier-Stokes equations is 

h = c max{p, p Re}, (3.6) 

where c is the same constant as in (2.56) and Re is a Reynolds number. To make 
this definition precise, we must say how we intend to compute the Reynolds number. 
If 

Re = UL/v, (3.7) 

where v = p/p (“kinematic viscosity”), and I/ and L are “characteristic” velocity 
and length, respectively, this entails specification of U and L. We usually take U 
to be the maximum expected velocity in the flow and L to be a major dimension 
(e.g., the “diameter” of a). Generally U may be estimated to sufficient accuracy 
from boundary data and simple physical considerations. 

In singular situations, such as Hamel flow [5], we employ classical definitions 
which result in finite values of Re, despite the maximum flow velocity being infinite. 

We wish to emphasize that it is not necessary to be very fussy about the selection 
of X as it may vary over several orders of magnitude with essentially insignificant 
effect on results. 

3.3. Weak and Galerkin Formulations 

A weak form of the boundary-value problem is stated as follows: 
Find u = w + 9, w E V, such that for all G E V 

Under appropriate hypotheses, solutions of (3.1) through (3.5) and (3.8) can be 
shown to be equivalent. 
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The Galerkin formulation may be obtained from the above by replacing u, w, 5, 
and V by uh, wh, 2h, and Vh, respectively. 

3.4. Matrix Problem 

Employing (2.27) and (2.28) in (3.8) gives rise to the matrix problem 

Cv + N(v) = F, (3.9) 

where C and F are the same as in Section 2.7, and N: IF& -+ IP+a is a nonlinear 
mapping defined as follows: 

N(v) = ii (P(V)), (3.10) 
f3=1 

IF(V) = {npe(ve>>, (3.11) 

ve = {Pv’}, vvr = z& ) p ==n(a- l)+i, (3.12) 

via = Uih(X,“) = &(X,“) if xae E rP n 
= lvih(X,“) if he $r,, 

(3.13) 

nen 
Uih(X) = c N,“(x) v& XELY, (3.14) 

a=1 

%I 
&xx) = c Nxx) vii XEJY, (3.15) 

a=1 

(3.16) 

3.5. Solution Algorithm 

Since (3.9) is nonlinear, some form of iteration need be employed. We have found 
it effective to use an incremental Newton-Raphson scheme in which density is used 
as a “load parameter.” Within each load level we iterate until convergence is achieved; 
the converged solution is used as the initial guess for the next load level. We initialize 
the first load level with the solution of the Stokes problem. It is well known that, 
under appropriate hypotheses, the Newton-Raphson scheme exhibits second-order 
convergence of the iterates. 

In a typical load level, the iterates are computed from 

C*(V) Av = dF, 

s+c+Av, 

(3.17) 

(3.18) 
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where G is the latest approximation to the solution, 

dF = F - Cc - N(T) 

C*(V) = C + DN(t), 

(“out-of-balance force”), 

ne1 
DN(P) = A (Dn”(?)) 

r=1 
(“tangent convection matrix”), 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The definition of the convection matrix, DN, is obtained with the aid of the 
directional (“variational”) derivative, i.e., 

(3.23) 

The convergence condition we require is that the ratio of dF to its original value 
for the load level becomes less than a preassigned tolerance, say lO-5. 

We may observe from (3.20) through (3.22) that C* is a nonsymmetric matrix. 
However, it possesses a symmetric profile (see Fig. 5). We employ a Crout elimination 
algorithm [83] which fully exploits this structure in that zeros outside the profile 
are neither stored nor operated upon. 

The preceding algorithm, which is felt to be the most effective for this class of 
problems, has been employed with success by Hughes et al. [52]. 

It may be noted that the definitions of ne and Dn” are identical for both the axi- 
symmetric and rectilinear cases. 

- 

I 
b 

- - 

FIG. 5. Nonsymmetric matrix possessing a symmetric band-profile structure. 
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3.6. Numerical Integration 

To complete the description of the steady Navier-Stokes algorithm, it is necessary 
to define the quadrature treatment of the element convection arrays (namely ne 
and DnE). The most straightforward procedure for quadrilaterals and “bricks” 
is to use iterated Gauss-Legendre rules. For the 4-node element, the 2 x 2 rule 
has been employed by Hughes et al. [52]; for the 9-node Lagrange element, the 
3 x 3 rule has been used by Bercovier and Engelman [8]. It has been demonstrated 
in these studies that many problems may be adequately solved with simple Gauss- 
Legendre integration of the convection arrays and relatively crude meshes. Some 
sample results for a much studied problem are contained in the following example. 

EXAMPLE-Driven Cavity Flow. A problem description is shown in Fig. 6. The 
penalty parameter is set in accord with (3.6). Note that the boundary conditions 
are discontinuous at the upper corners. Two meshes of 4-node elements, employing 
different approximations of the boundary conditions, are shown in Fig. 7. As can 
be seen from the midplane velocity profiles, Fig. 8, the different treatments of the 
boundary conditions can result in significant quantitative differences, especially 
as the Reynolds number is increased. Several investigators have studied this problem 
and quite a variety of approximations of the corner discontinuities have been employed 
(see, e.g., [8, 11, 25, 52, 861). By virtue of the sensitivity of the results to the treatment 
of the boundary conditions, care must be taken in interpretation. 

FIG. 6. Driven cavity flow: problem description. 

For example, consider a 10 x 10 mesh of square, 9-node elements. This mesh 
would have the same number of degrees of freedom as the 20 x 20 mesh of 4-node 
elements and it may seem appropriate to compare results. However, one should keep 
in mind that setting the nodal boundary conditions in identical fashion actually 
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(al 20 x 20 element mesh (b) 20X 21 element mesh 

FIG. 7. Driven cavity flow: Finite element meshes employing different approximations of dis- 
continuous corner boundary conditions. 

-- ZOx20mesh 

1.0 

"2 O 

-1.0 

-1.0 0 1.0 
UI 

--- --- 20x20 mesh 20x20 mesh 

- - 20x21 mesh 20x21 mesh 

1.0 1.0 

FIG. 8. Driven cavity flow: midplane velocity profiles. 

implies different representations along the vertical edges of the corner elements 
(cf. Figs. 7 and 9). Discrepancies noted between midplane velocity profiles (see [35]) 
may be attributed to the different boundary conditions, and are not indicative of the 
respective merits of the elements. 
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FIG. 9. Driven cavity flow: Approximation of discontinuous comer boundary condition for a 
9-node element. 

,I \\\\..---,,, 

I I\\\..--__,, 

, % \\\\..--_Fr, 

,,~.,..._.____ 

.,.,...___.__. 

_...._..-.---- 

.,_.___...--.- 

_....._...---. 

(a) (b) 

FIG. 10. Driven cavity flow (Re = 0; 20 x 21 mesh): (a) Velocity vectors; (b) streamlines; 
(c) pressure contours; and (d) vorticity contours. 
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(a) (b) 

Cc) (d) 

FIG. 11. Driven cavity flow (Re = 100; 20 x 21 mesh): (a) Velocity vectors; (b) streamlines; 
(c) pressure contours; and (d) vorticity contours. 

In passing, we note that most studies of cavity flows, even those at high Reynolds 
numbers, have employed uniform meshes. As the steep gradients in the problem 
are all adjacent to the boundaries, and are especially severe in the corners, it would 
seem propititious in future studies to grade the mesh accordingly. As is well known, 
this may be easily done with finite element methods. 

Further results for the 20 x 21 mesh are shown in Figs. 10 through 12. Continuous 
pressures and vorticities are calculated by way of the algorithms described in Section 
2.10. 

Despite some successes at surprisingly high Reynolds numbers [.52], it is our 
experience that Gauss-Legendre treatment of the convection arrays is not generally 
effective at high Reynolds numbers. A typical situation which exhibits the short- 
comings of such schemes is encountered upstream of obstacles; see Section 6.4. 
The nonphysical “wiggles” which appear can only be removed by mesh refinement. 
At high Reynolds numbers, the degree of refinement necessary to preclude such 
pathologies is felt to be excessive, undermining the practical utility of the methods. 
For these reasons, alternative treatments of the convection terms have been 
investigated. 
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(b) 

(d) 

FIG. 12. Driven cavity flow (Re = 400; 20 x 21 mesh): (a) Velocity vectors; (b) streamlines; 
(c) pressure contours; and (d) vorticity contours. 

4. “UPWIND" FINITE ELEMENTS 

Galerkin finite element methods give rise to central difference approximations of 
first-order differential (e.g., convection) operators. The inability of difference approxi- 
mations of this type to handle convection dominated phenomena has been known 
for some time in the finite difference literature [7.5]. To circumvent these problems, 
“upwind differences” have been proposed which preclude oscillations, but are formally 
less accurate than central differences. 

Recently, schemes which attempt to achieve similar ends have been proposed 
within the context of weighted residual/finite element methods (see [2, 7, 12, 21, 
32-34, 44, 45, 62, 63, 871). Although these schemes differ considerably in concept 
and implementation, they have collectively becomes known as “upwind finite element 
methods.” At this time it is still too early to evaluate the relative merits of the various 
schemes which have been proposed. We may note, however, that rigorous foundations 
have already been elucidated for several of the new schemes (see [2, 451). 

In the following sections we describe the upwind finite element techniques that 
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we have been using. These methods are based upon numerical integration rules and 
are at once very easy to implement, efficient, and effective. 

We begin with a linear model problem-the advection-diffusion equation. 

4.1. Advection-DifSusion Equation 

The boundary-value problem for the steady advection-diffusion equation is stated 
as follows: 

Find I$: D--f R such that 

%+,i = Ck4,i),i + f on .Q (4.1) 

4=s on r,, (4.2) 
k$,ini = d on rd, (4.3) 

where Ui is the given flow velocity, k > 0 is the diffusivity, and Pp, 8, and A are the 
prescribed data. 

A weak form of the problem is given by the following: 
Find C$ = w + 2, w E V, such that for all il; E V 

f 52 (uiW,iW + kw,iw,i) dQ = J” f% dL’ + 1 
s r/i 

~2% dT - j (u,P,~F + k>,iW,i) dQ. 
P 

(4.4) 

Under suitable hypotheses, solutions of (4.1) through (4.3) and (4.4) may be shown 
to be equivalent. 

The Galerkin formulation corresponding to (4.4) leads to the following matrix 
problem: 

Kd = F, (4.5) 

where 

K = [&cd, 1 < P, Q < aeq 3 (4.6) 

d = {do), (4.7) 

F = {r;,}. (4.8) 

The global arrays may be constructed from the element arrays in the usual fashion; 
viz., 

K = 2 (k”), F = ii (f”), (4.9) 
t?=l a=1 

k” = EtJ, f” = Mz”>, 1 < a, b < nen , (4.10) 

k% = j Wa eUiNi,i + Ni,ikN,“,i) dQ, (4.11) 
R” 
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7’0 e = g(x,“) if Xbe E rq, 

-0 if x,e$ rq. 
(4.13) 

The matrix K is nonsymmetric due to the advection term, but possesses a symmetric 
profile (cf. Fig. 5). In advection dominated situations, the definition of k” given above 
(i.e., Eq. (4.11)) may lead to significant oscillations unless the mesh is sufficiently 
refined. To circumvent this occurence for the basic isoparametric elements (i.e., the 
linear, bilinear, and trilinear elements in 1, 2, and 3 dimensions, respectively) we 
adopt the following alternative definition of ke: 

6, = NJ?) ui(Oe) N:.i(?) i(W) W + j N,“,ikN;,i dJ2, 
R’ 

(4.14) 

where EC is some point in the eth element domain, 0” is the origin of isoparametric 
coordinates in the eth element, and W is a weight factor which equals 2, 4, or 8 
when the problem is 1-, 2-, or 3-dimensional, respectively. Any sufficiently accurate 
integration rule may be used to evaluate the diffusion terms (e.g., the standard Gauss- 
Legendre rules). The location of the point ee determines the degree of “upwinding” 
in each element. 

As an example of how the point Ee is picked, we consider a typical 4-node quadri- 
lateral and, for notational convenience, drop the e superscripts. A representative 
geometry is illustrated in Fig. 13. Let 5 = ([, $r, let ee and e, denote the unit basis 
vectors at 0 in the 5 and v directions, respectively, and let h, and h, be the lengths 
of the element in the 5 and 7 directions, respectively, as depicted in Fig. 13. Then f 
and 3 are given by the following relations: 

u, = evTu(0), 

01, = wklW(ON~ 
[ = (coth IX~) - l/c+, 

(“element Peclet numbers”). 
+j = (coth an) - l/a, , (4.15) 

The derivation which leads to (4.15) is contained in Hughes [44], in which it is 
shown that for the l-dimensional, constant coefficient case, the above procedure 
results in exact nodal values for all mesh lengths (i.e., “superconvergence”). For this 
reason we refer to the present technique as the optimal upwind scheme (see Fig. 14). 
In the multidimensional, variable coefficient case, the optimal upwind scheme may 
be shown to be second-order accurate (see Roscoe [76-781 for related ideas). 

A simplified scheme which avoids the calculation of hyperbolic cotangents, precludes 
spurious oscillations and maintains second-order accuracy is given by 

f = -1 - l/cQ, OLe < -1, 
= 0, -1 < cxf ,< 1, (4.16) 
= 1 - l/arE ) 1 <BE, 
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FIG. 13. Typical 4-node quadrilateral finite element geometry. 

FIG. 14. Integration rule for optimal upwind scheme. 

and 
7j = -1 - I/O+, a, < -1, 

= 0, -1 < a, < 1, (4.17) 

= 1 - l/% , 1 < an. 

For reasons given in 1441, we refer to (4.16) and (4.17) as the critical upwind scheme 
(see Fig. 15). 

The full upwind scheme, defined by 

$= -1, “E -c 0, 
= 0, OIc = 0, (4.18) 
= 1, % > 0, 
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FIG. 15. Integration rule for critical upwind scheme. 

and 
fj = -1, %I < 0, 

= 0, atl = 0, (4.19) 

= 1, an > 0, 

which results in the standard upwind difference approximation to the advection term 
(see [75, p. 651) is not recommended in general as accuracy drops to first order. 

Remarks. 1. Triangles may also be formed using the technique of degeneration. 
2. The generalization of the above procedures to three dimensions is obvious 

and need not be considered further. 

EXAMPLE-Entry Flow in a Channel. The effectiveness of the present scheme 
may be seen from the problem shown in Fig. 16. The velocity field was obtained by 

Co) Problem statement 

I I I / I I I 
0 / 2 3 4 5 Xl 6 

(bi Mesh 

FIG. 16. Entry flow in a channel: problem description and finite element mesh, 
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employing the steady Navier-Stokes algorithm described in the previous sections. 
(2 x 2 Gaussian integration was used on the convection terms.) A comparison of 
four different integration treatments of the advection terms is contained in Fig. 17 
for a Peclet number of 150. As can be clearly seen, the upwind schemes are superior 
to the Gauss schemes. For this high a Peclet number, there is little difference between 
the optimal and full upwind schemes. 

“-1 P,=l5b 

-3.0 2x2 GAUSS 

FIG. 17. Entry flow in a channel: comparison of results for four different integration treatments 
of the advection term. 

The downstream boundary layer is entirely contained within the last column of 
elements and thus the present mesh is incapable of resolving it. The virtue of the 
upwind schemes is that the rest of the solution is not vitiated by the failure to capture 
the boundary layer, as is the case for the Gauss integration treatment of the advection 
term. This is an important feature when one considers use of multigrid schemes [9] 
to resurrect details such as boundary layers. 

At a much higher Peclet number (i.e., 1.5 x 10’) the optimal and full upwind 
schemes give identical results whereas the Gauss schemes plot off scale (see Fig. 18). 

Some controversy has arisen as to the appropriateness of this problem as a test for 
evaluating the relative merits of upwind and Galerkin schemes (see [27, 921). It is our 
opinion that the results do show the superiority of the upwind approach here. The 
usual (and valid) criticism that upwinding is only first-order accurate does not apply 
to our optimal and critical schemes. 

Remark. The present formulation of upwind finite elements is extremely simple 
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I.0 I I I I 

Pe = 1.5 x IO7 

+ 0.5- 
x2 q .25 

I I I 
2 3 4 5 6 

x, 

FIG. 18. Entry flow in a channel: results for optimal and full upwind schemes at high Peclet 
number. 

to implement into existing computer codes employing Galerkin finite element methods. 
The computational cost is also reduced compared with the schemes of [34] as the 
present technique is, in essence, a one-point evaluation of the advection term, in 
which all other terms of the Galerkin formulation remain unaltered. The unsymmetric 
location of the evaluation point controls the degree of upwinding, so all the inherent 
advantages indicated in [34] are realized. 

4.2. Upwind Integration Rules 

An important point to observe from the preceding developments is that upwind 
elements were constructed from the usual basis and weighting functions by adjustment 
of the integration rule. This suggests that the theory of upwind elements may be 
reducible to special integration rules. It is of interest to construct higher-order rules, 
involving more points, analogous to the Gauss-Legendre rules. From results obtained 
in [2] we infer that the pertinent integration rules may be determined from the relation 

(4.20) 

where 

.r 
+1 

g=& eaC df (4.21) 
-1 

in which nint is the number of integration points, [r is the lth point and W, is the 
associated weight. The points and weights are determined by satisfying (4.20) for 
g(t) = 1, 5, P,..., etc. The l-point rule, which is exact for g(f) = 1 and [, is given by 

& = (coth a) - l/a, w, = 2. (4.22) 

This is the rule which is used in the optimal upwind scheme. 
Closed form expressions for integration points and weights of higher-order rules 

are extremely complicated. Graphs of numerically obtained results, as well as 
asymptotic approximations for small and large o(, are contained in [2]. 

In general, 12. Int points are required to satisfy (4.20) for g(f) = 1, f,..., tsnint-l. 
When OL = 0, the rules reduce to the Gauss-Legendre rules. For all rules, as 01 --f & co, 

581/30/I-3 
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<z -+ &l, I = 1, 2 ,..., nint ; that is, in the infinite Peclet number limit, the general 
ni,t-point rule degenerates to the l-point rule. Product rules for 2- and 3-dimensional 
domains may be found by standard techniques. Let us assume the product rule under 
consideration consists of nint integration points, & , and weights W, . Then the 
advection-term contribution to k” may be written as 

(4.23) 

4.3. Upwind Treatments of the Navier-Stokes Equations 

Although application of the preceding techniques to the Navier-Stokes equations 
is straightforward, we have found certain deficiencies in numerical tests. Our expe- 
riences indicate that the upwind technique does eliminate certain spurious oscillations 
associated with the pure Galerkin formulation. For example, oscillations upstream 
of obstacles (see, e.g., [SO]) are removed. However, in some problems for which the 
Galerkin method worked well (e.g., the Hamel problem; see [52]) a degradation 
of accuracy occurred with the upwind schemes described previously. We have 
determined, largely by numerical experiments, that these difficulties are encountered 
when the fluid experiences significant “squeezing,” such as occurs in highly singular 
situations (e.g., the Hamel problem). Under these circumstances Gauss quadrature 
works quite well, whereas upwind quadrature appears to be superior when the fluid 
is “stretching.” To appropriately account for these different effects, we have designed 
a modified upwind quadrature rule, based on the linearized Burgers’ equation 

u#,, + u’4 = 4&m, (4.24) 

where we assume V, u; and u’ are given constants. A weak form is established, similar 
to (4.4), and linear shape functions are assumed. We allow either a l-point un- 
symmetric integration, or 2-point symmetric integration (i.e., <, = --fI = [), of 
the terms emanating from the left-hand side of (4.24). Assuming equal-sized elements, 
the difference equation at an interior node takes the form 

(-a - 1 - co) d,-, + (/3 + 2(1 + w)) dP + (a - 1 - w) dP+l = 0, (4.25) 

where 
w = ag - B(l - &/4, l-point rule, 

= -/3(1 - @/4, 
(4.26) 

2-point rule, 
in which 

a = uh/(2v) (“element Reynolds number”) 
and 

/3 = u’h2/v. (4.28) 

/3 is a nondimensional measure of the u’-term. The term w is a nondimensional 
“artifical viscosity.” 
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The integration rule is determined as follows: 
If /3 3 0, we ignore its effect and revert back to the l-point upwind scheme being 

employed (i.e., either optimal or critical; see Section 4.1). 
If /3 < 0, o/al is set equal to the evaluation point of the l-point upwind scheme, 

and the new g is determined from (4.26). If / ,8 1 < 4 / LX /, the first of (4.26) is employed, 
whereas if / p / > 4 / N j, the second is employed. 

A schematic of the modified upwind integration technique is shown in Fig. 19 
for positive 01. As can be seen, negative ,!3 causes the integration point to move towards 
the center of the element. As the integration point passes through the center, it 
bifurcates and subsequently the two points move symmetrically towards the nodes. 
In the limit fi + -cc, the integration scheme becomes the trapezoidal rule (i.e., 
nodal quadrature). 

* 
P’o: 0 m 

p<o: 

IPl>4a 
FIG. 19. Movement of integration points for modified upwind scheme in the case of positive CL 

A detailed generalization of the scheme for a 2-dimensional element is presented 
in Table I. The 3-dimensional case proceeds analogously. 

Although the logic is somewhat long, it is rarely the case that there is more than 
one integration point and thus the evaluation of the convective terms can be performed 
efficiently. The counterparts of (3.16) and (3.22) for the modified upwind scheme are, 
respectively, 

nint 

and 
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TABLE 1 

Modified Upwind Scheme for a 2-Dimensional Element 

1. Calculate , , he, h, , u(O), and et e, Vu(O), where 

vu = [;::: ;:;I 

2. us = e$u(O), 
at = u*h&%v), 
2 = (coth q) ~ 1 ;aca, 
u; = egrVu(O)eg . 

If 65 - 1 i 0, go to 4a, 
= 0, go to 4b, 
:, 0, go to 4c. 

4a. {, = (1 - 6f)1’z; g, = -& ; & = 2; go to 10. 

4b.&==~,=O;n~,,,=l;gotolO. 

4c. 2,,2 = bg It [$ - 4(S< - 1)1:'2. 
If 2 < 0, to 4d, go 

> 0, go to 4e. 

4d. If $ < 2, or g, i 0, 2, = 2. 
If & < 4, or 2, 3, 0, z, = z. 
2 = max(& , 2,); go to 5. 

4e. If 2, 3- $, or $, < 0, i, = 2. 
If z, > 8, or & < 0, g, = z. 
2 = min($, , x,); go to 5. 

5. 1, = & = z; nfn, = 1; go to IO. 

6. u,, = e,‘u(O), 
a7 = uvh,/(2v), 
;i = (coth a,,) - l&i,” 
~4; = e,rVu(O)e, 

I. If ll:, > 0, go to 9. 

8. ,8,, = u;h,21’v, 
YTJ = 4aq,/l P,, I, 
6, 1 ?SY? , 
if 6, ~ 1 < 0, go to Sa, 

= 0, go to 8b, 
:*- 0, go to SC. 

a These formulas may be replaced by the corresponding ones for the critical upwind scheme (see 
(4.16) and (4.17)). 

Table continued 
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TABLE I-Continued 

8b. ;il == ;le = 0; n$ = 1; go to 10. 

8c. 111.2 = (y7 c [yqz - 4(6, - l)]) 2: ny,,, z= 1. 
If ;i < 0, go to 8d, 

>, 0, go to 8e. 

8d. If Gj, c ;i, or ;il 0, ;j, = Gj. 
If ij2 C: ;i, or kj2 ;- 0, ;ld = 7. 
Fj = max(t, , ;j?): go to 9. 

9. ;j,=;,=-,;ng,=r. 

If ?lint = 4, then 2, = z,, 2, = 2,) Yj3 = 7, and ijl = 71 .* 

b For a 2-dimensional, incompressible flow, if the f and 7 axes are perpendicular, one of u; and 
ui must be >O, by the continuity equation. In this case it is impossible that nint = 4. 

As almost all of our calculations with the modified upwind scheme have been 
performed in the context of the unsteady equations, we postpone presentation of 
sample problems until we describe our transient algorithms. We note, however, 
that the modified scheme has performed satisfactorily in all cases considered. Never- 
theless, since the scheme was designed on the basis of empirical results, and in view 
of the fact that the mathematical theory of upwind elements is now an active research 
area, we feel that simplifications and improvements will doubtless be forthcoming. 

5. UNSTEADY NAVIER-STOKES EQUATIONS 

5.1. Preliminaries 

Let [0, T] denote the closed time interval in question; IO, T[ denotes the corre- 
sponding open interval (i.e., end points omitted). A general point in [0, T] is denoted t. 
A comma followed by a subscript t is used to denote partial differentiation (e.g., 
U1.t = a21,jat). 

If u = u(x, t) is any time-dependent function of x and t, then we denote by u(t) 
the function of x obtained by freezing t (e.g., u(0) = u(x, 0), the initial value of u). 



36 HUGHES, LIU, AND BROOKS 

Prescribed data are henceforth considered to be time dependent. That is, we assume 
the following functions are given (cf. Section 2.2): 

f: Q x IO, T[ + R”, 

8: ry x IO, 7-[ --f R”, - w 

R: r, x IO, T[ --f R”. 
rr 

We also assume a given starting velocity, namely 

(5.1) 

(5.2) 

(5.3) 

. “0 . ii+ R”. (5.4) 

5.2. Penalty-Function Formulation 

The initial/boundary-value problem for the penalty-function formulation is stated 
as follows: 

Find u: J? x [0, T] -+ Iw” such that 

P(2Li.t + UjUi,j) =-ZZ tii,j C {I on Q x IO, T[, (5.5) 

ui = yi on ry x IO, U, (5.6) 

t,pj = Ri on rd x IO, T[, (5.7) 

Ui(O) = uoj on Q, (5.8) 

where tij is defined by (3.4) and (3.5). 

Remark. The selection of the penalty parameter is done in the same way as in 
the steady case; see Section 3.2. 

5.3. Weak and Galerkin Formulations 

Let 2: IO, T[ --f H1 denote a given extension of 8; that is, 

j”=p on rg. x 10, T[. (5.9) 

A weak form of the initial/boundary-value problem is stated as follows: 
Find u = w + i, w: [0, Y’j --f V, such that for all w E V 

i D (~[,;‘i,t + ~j~i,j] Gi + hn’j.iG<,< 4. 2pt4’(i,j)W(i,j)) dQ 

= /*+iwi dQ + J Ri%i dr - 
0 s (~Fi,tZi + X;j.jEf,i + 2pF(i,i)W(i,j)) dQ, 

(5.10) 

.i, ~~(0) E, dsZ = [ (uio - Fi(O)) Wi dQ. (5.11) 
I) 
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The Galerkin formulation may be obtained from the above by replacing u, w, >, 
and V by uh, wh, sh, and Vh, respectively. 

N 

5.4. Matrix Problem 

The nodal values, oiA and gia (cf. Eqs. (2.27) and (2.28)), now become time- 
dependent functions (e.g., viA : [0, T] + R). Substituting (2.27) and (2.28) into the 
Galerkin equivalent of (5.10) gives rise to the ordinary differential equation 

Mir + Cv + N(v) = P, (5.12) 

where v: [0, T] + KPq; a superposed dot is used to denote time differentiation; 
C and N are the same as in Sections 2 through 4; M is the mass matrix defined by 

M = ;;‘ (me), 
e=l 

0 - 
fl~,q - iSij 1 pNOeNbe dQ, p = n(a - 1) - 

sac 

and P: [0, r] + lP is defined by 

f? = F - “;; (P), 
r=1 

5.5. Lumped Mass Matrices 

(5.13) 

(5.14) 

i, q = n(b - 1) +j; (5.15) 

(5.16) 

(5.17) 

(5.18) 

Throughout we employ techniques which render the mass matrix diagonal (i.e., 
“lumped” cf. Section 2.10) as this results in several computational simplifications. 

For 2- and 3-dimensional, rectilinear, Lagrange elements we use product Lobatto 
integration rules which diagonalize (5.15). The first two Lobatto rules are the 
trapezoidal and Simpson’s rules, whose product6 are appropriate for the 4- and 
9-node elements, respectively. As this amounts to nodal integration, (5.15) is diagonal- 
ized by virtue of the property Nae(xbb) = sub . 

Tn the axisymmetric case, nodal integration results in zero masses along the z-axis 
due to the factor r appearing in the volume element. This can cause problems for a 
transient integration algorithm, and thus we use other techniques which circumvent 
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this difficulty. For the 4-node, axisymmetric quadrilateral, we use a “row-sum” 
technique in which 

me,, = %A,~ j t&t dQ (no sum on “u”). (5.19) 
RP 

The integral in (5.19) is evaluated by 2 x 2 Gauss-Legendre integration. 
An evaluation of these, and other, mass lumping techniques, for a variety of 

elements applied to problems of plate bending, is given in [41]. However, mass 
lumping is still a controversial issue in fluid mechanics, due to the results of Gresho 
et al. [30]. 

Mass lumping simplifies (5.16) in that the second term on the right-hand side 
vanishes; that is, 

P = F. (5.20) 

Application of corresponding diagonalization techniques to the matrix equation 
resulting from substituting (2.27) and (2.28) in (5.11), yields a simplified version of 
the initial condition; namely, 

v(O) = vo 2 (5.21) 

where 

vo = @OP>, (5.22) 

UOP = ~o&f), P = ID(i, A). (5.23) 

We assume (5.21) through (5.23) hold henceforth. 

5.6. Transient Algorithm 

Equations (5.12), (5.20), and (5.21) constitute an initial-value problem for a system 
of nonlinear ordinary differential equations. To approximately solve this problem, 
a time-stepping algorithm need be introduced. This is an area of much current 
research activity and many different ideas have been proposed (see, e.g., [3,3 1,81, 851). 
The algorithms we have employed are one-step, “linearly implicit,” predictor- 
corrector methods and are summarized as follows: 

(M + Y At C) v%t’ = MC,+1 + y d tFncl - N(v$J] (“corrector”), (5 24) 

ir - v, + (1 - r> At a, la+1 - (“predictor”), (5.25) 

v(o) = + 
n+l n+1' 

0 

anll = (vn+1 - ~n+,Mr At>, (5.27) 

where At is the time step; F, = F(t,); v, and a, are the approximations of v(t,J 
and +(t,J, respectively; y is a positive parameter which governs the stability and 
accuracy of the algorithms; and superscripts in parentheses are iteration numbers. 
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If Z denotes the total number of iterations to be performed, then the velocity vector 
at time tn+i is defined by 

V n,.l z v(I+l) n+1 . (5.28) 

Given v, and a, , (5.24) through (5.28) serve to uniquely define v,,+~ and a,,, . 

Remarks. 1. In each time step, (5.24) is used Z + 1 times. The matrix on the 
left-hand side of (5.24) is symmetric, positive-definite, and possesses the band- 
profile structure of C. In our work so far we have relied on direct elimination schemes 
for solving (5.24), although we are now experimenting with iterative techniques 
to cut down storage requirements. For a fixed time step, only one factorization need 
be performed. The major contributors to the computational cost of the algorithm 
are the formation of the nonlinear term, N(v$, and the forward reduction/back 
substitution of the factorized array in obtaining v$::)~ . 

2. A local truncation-error analysis reveals that if I -= 0, the algorithm is 
first-order accurate, whereas if Z = 1 and y = 4, second-order accuracy is achieved. 
The latter algorithm is roughly twice as expensive as the former since twice as many 
solutions of (5.24) need be performed. 

3. We observe from (5.24) that the C-term is treated “implicitly,” whereas 
the N-term is treated “explicitly.” (We see no hope in treating C explicitly due to the 
penalty term.) As long as y >, .i , no stability condition is engendered by the C-term. 

The stability condition induced by the N-term has been investigated by way of 
Fourier analyses [74] of the l-dimensional, transient, linear, advection-diffusion 
equation. 

The results of these analyses indicate that if Z = 0, the upwind schemes of Section 
4.1 are stable if dt satisfies a Courant condition. Generalized to two dimensions, 
the criterion employed takes the form (see Section 4.1 for notation) 

(5.29) 

The above inequality must be satisfied for each element in the mesh. We may note 
that (5.29) is solely a convection condition and, in particular, is independent of the 
Reynolds number. 

On the other hand, if Z = 0, Gauss-Legendre integration on the N-term is unstable 
for all At > 0. A stable scheme, accomodating Gauss-Legendre treatment of the 
N-term, consists 1 c 9  T r  - 0 . 0 8 7   T c s 2 3   T w  ( t h e  )  T j A j 
 0   T r  E T 
 B T 
 0 . 8 8 8 9  0  0  1  9 9 . 1 2  1 2 8 . 4   T m 
 3   T r  / F T r  - 0 . 0 8 3 3   T c  0 . 0 2 5 6 e g e 8 9  0  0  0 1 2 8 . 4   T r  8 3 . 7  0   T D s a o 0 . 0 8 
 8 1 c 9  T r  - 0 8 0 . 1 3 2 3   T w  ( t h e  )  T 8  N-term, t1320.1719  Tc 0.1579  Tw (hand, ) Tj
0   Tj
0  Tr -37.26 -24  TD 3  Tr -0.0181tak70477  Tc 0.0183c9 0  TD 3  Tr -0.1617c -0.0184  Tw (N-term ) Tj
0  Tr 36.99 0  TD 3  Tr -0.1772  Tc 0.1639  Tw (is ) Tj
0  T4  T t1320.1719  Tc 0.1579  T1(unstable ) Tj
0
0  Tr 17.82 0  TD.1719  Tc33Tw (N-tey. ) Tj
0  Tr 142ists i s  



40 HUGHES, LIU, AND BROOKS 

4. The algorithm is initialized by specification of v,, and a, . It often suffices 
to commence calculations with a quiescent state (i.e., v,, = a,, = 0). 

5. In time-dependent, creeping-flow problems the nonlinear term may often be 
neglected. This is important as unconditional stability may be thereby achieved and 
thus only accuracy governs the size of the time step taken. We refer to omitting the 
N-term in (5.24) as the “transient Stokes option.” 

6. Our program may be run at a constant (input) time step, or at a step redefined 
adaptively, for each t,, , according to the right-hand side of (5.29). 

It is important to cut down on refactorization costs when dt is being selected 
adaptively. A scheme we have been employing with success consists of redefining y 
to compensate for the step-size change. Specifically, we proceed as follows. Let 
d tract and Yract denote the values of dt and y, respectively, used during the last 
factorization, and let 

c -= yfact LJlrsct . (5.30) 

On the basis of the velocity field at t, , calculate df,,n according to the right-hand 
side of (5.29). Define 

Y 71+1 = c/Atcrit . (5.31) 

If yn+l E [$ , I], do not refactorize, but set y = yn+l and At = Atcrit in (5.24) through 
(5.28). If, on the other hand, yn+l $ [$ , 11, set At = Atcrit , y = 2 and refactorize. 
This value of y is picked to reduce the likelihood of refactorization in subsequent 
steps. Other procedures along these lines are under investigation. (See also Park [69] 
for related ideas.) 

7. The convection stability condition of the present schemes is, in some cases, 
a drawback. For example, if we are interested in an essentially steady flow, and the 
length of the time interval, 7’, required to attain steady conditions engenders many 
steps (e.g., cavity flows), a “fully implicit,” unconditionally stable scheme is no doubt 
superior. Schemes of this sort, which have been described in [31, 811, have about 
the same computational structure in each time step as the steady-flow algorithm 
described in Section 3.5. This involves a nonlinear, nonsymmetric, implicit system 
involving twice the storage of the linear system required here. We believe that the 
storage and computational effort engendered by fully implicit algorithms are pro- 
hibitive in most cases, as often accuracy dictates taking as small a time step as the 
convective stability condition. Indeed, our experiences have so far indicated that the 
transient algorithm of (5.24) through (5.28) is often more reliable and cost effective 
in obtaining steady flows than the steady-flow algorithm of Section 3.5. Further 
research needs to be performed to deduce practical guidelines in this matter. 

It would be worthwhile to attempt to construct a hybrid, fully/linearly implicit 
scheme which possessed the virtues of each constituent, but not the defects. 

8. Higher-order accuracy may be achieved without iterating by going to a 
multistep method. This would engender storing additional state vectors, but no 
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additional calculations, and consequently it might represent a worthwhile im- 
provement. 

9. For free-surface flows, and problems of fluid-structure interaction, it is 
important to be able to move the finite element mesh with the fluid. The generalizations 
of the preceding algorithm to achieve a so-called “arbitrary Lagrangian-Eulerian” 
(ALE) formulation (see, e.g., [I, 42, 701) are discussed in Hughes et al. [49]. 1 

The effectiveness of the transient algorithm, in solving a variety of flow problems, 
is illustrated in the next section. 

6. NUMERICAL EXAMPLES 

In the following we present a sampling of problems which demonstrate the versatility 
and accuracy of the methods described in this paper. Throughout, unless otherwise 
specified, we use 4-node quadrilaterals, and the modified (optimal) upwind treatment 
of the convective forces, as described in Section 4.3. If an estimate of the critical time 
step is available beforehand, we use a constant time step; if no estimate is available, 
the variable-step procedure, described in Remark 6 of Section 5.6, is employed. 
The penalty parameter is selected according to (3.6) unless otherwise specified. 

6.1. Couette Flow 

The mesh and problem description are shown in Fig. 20 and results are shown in 
Fig. 21. This is a simple problem in which the convection term is identically zero. 
A boundary layer develops along the lower edge and diffuses upwards, forming a 
steady, linear, velocity profile as t increases. 

H=4 

,I 
x2 

r 
XI 

u, = 
(? 

t < 0 
t 20 

up =o AT ALL NODES 

FIG. 20. Couette flow: finite element mesh and problem description. 
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vz 

At = .0625 

- EXACT 

'0 

FIG. 21. Couette flow: comparison of finite element results with exact solution. 

6.2. Dam-Reservoir Problem 

In earthquake engineering, it is of interest to calculate the pressure distribution 
on the face of a dam caused by suddenly accelerating the dam into a contiguous 
reservoir. The problem statement is shown in Fig. 22. The dam is assumed rigid. 
The initial conditions are quiescent and at t = 0’ the dam face is set in constantly 
accelerating motion towards the reservoir. The transient Stokes option is employed. 
Data for the problems are given as follows: p = 0; p = 1; L = 2, H = I ; h = 107; 
y = 1; dt = 0.025; and T = 0.1 (4 time steps). Meshes and results for two cases are 
shown in Fig. 23. 

Pressures are compared in Fig. 24 with an exact, potential-flow solution due to 
Chwang [13]. As can be seen the results are in good agreement. (There has been 
considerable interest in this problem; see, e.g., [14, 55, 79, 881.) 

6.3. Hamel Problem 

The Hamel problem of convergent flow in a channel (“inflow problem”) has been 
considered recently by several investigators (see [28, 35, 521). The finite element mesh 
employed here is shown in Fig. 25. A radial velocity profile, in accord with the 
high Reynolds number approximation to the exact solution (see Batchelor [5, pp. 
294298]), is set at the outer radius (r = 4) having center line magnitude of $ . The 
circumferential velocity at r = 4 is set to zero. The outflow boundary condition 
at r = $ is assumed traction-free. (This results in negligible differences at high 
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FIG. 22. Dam-reservoir problem: description. 

(7 1: , ‘, ‘/ ‘, ‘, ‘~~ -~ ---- 
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<, -. .- . 
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-(b)- - 

FIG. 23. Dam-reservoir problem. (0 = 60”): (a) Finite element mesh; (b) velocity vectors; and 
(c) pressure contours (--) and streamlines (- - -). (0 = 90”): (d) Finite element mesh; (e) velocity 
vectors; and (f) pressure contours (&--) and streamlines (- - -). 

Reynolds numbers when compared with the exact traction boundary condition.) 
The Reynolds number, following Batchelor [5, p. 2951, is given by Re = TT/(~v). 

Results for Re = 500 and 5 x IO’ are presented in Figs. 26 and 27, respectively. 
As can be seen, the correlation with the exact solution is very good. (Pressures in 
Figs. 26 and 27 are reported at the element centers and are “unsmoothed.“) 
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&. .6 
H 0 Finite element 

.4 

C,= p/(paH) 

FIG. 24. Dam-reservoir problem: comparison of finite element and exact results. 

O=T 6 

60 ELEMENTS 
110 EQUATIONS 

FIG. 25. Hamel flow: finite element mesh. 

6.4. Flow over a Step 

A problem statement is depicted in Fig. 28. 
In Fig. 29 we present results of a calculation performed with 9-node Lagrange 

elements. A (product) Simpson’s rule was used to construct the mass matrix, whereas 
Gauss-Legendre rules of order 3 x 3,3 x 3, and 2 x 2, were used on the convection, 
CL, and h-terms, respectively. Data employed were :p = 1; p = 200; X = log; y = 1; 
and d t = 0.07. As is clearly visible, “wiggles” appear upstream of the step. Similar 
results are obtained for the It-node elements employing Gauss-Legendre integration 
of the convection term. We believe this problem demonstrates the inappropriateness 
of Gauss-Legendre integration of the convection term. 

Results for 4-node elements which employ the modified upwind treatment of the 
convection term at .Re = 200 and IO7 are shown in Figs. 30 and 31, respectively. 
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I r I I 
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I I / 
2 3 a 

I 
(b) 

FIG. 26, Hamel flow: Comparison of finite element (0) with exact ( -) results:at low Reynolds 
number. (a) Velocity; and (b) pressure. 

L 
OO 

I I , I 
I 2 3 4 

r 

(b) 

FIG. 27. Hamel flow: comparison of finite element (0) with exact ( -) results at high Reynolds. 
number. (a) Velocity; and (b) pressure. 
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~~~ 

“,=“~=o--f 

FIG. 28. Flow over a step: problem description and finite element mesh information. 

. . \ _ _ _ _ .._ -. / 
t=z.t3 (n=40) 

FIG. 29. Flow over a step (Re = 200): finite element results for g-node elements with Gauss- 
Legendre integration of convection terms. 

(Data employed in these cases were: (Re = 200) TV = 1; p = 200; x = 108; y = 1; 
(Re = 10’) p = 1; p = 10’; X = 1013; and y = 1. Time steps were selected adaptively.) 
As can be seen, the upstream “wiggles” are removed in both cases. 

6.5. Axisymmetric Flow through a Sudden Enlargement 

A problem description is contained in Fig. 32. The domain and mesh are split 
at section (iii) for pictorial purposes only. Calculations were performed with the 
transient algorithm at a fixed time step, At = 0.5, and y = 0.75. The dynamic 
viscosity, p, was set to 1 throughout. Thus Re = p and the penalty parameter was 
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ll=u2=0 laxis of symmetry) 
Re = I/v I 

I 1 
ii iii 

t,=u2=0 (axis of symmetry) 

u,=q=o 
t,=lQ=o 
(outle1) 

(0) Problem stotement 

(b) Finite element mesh 

FIG. 32. Axisymmetric flow through a sudden enlargement: problem description. 

(a) 

(b) 

(d) 

(e) ii 

FIG. 33. Axisymmetric flow through a sudden enlargement (Re = 60): (a) Pressure contours; 
(b) vorticity contours; (c) velocity vectors; (d) streamlines; and (e) detail of streamlines in recircula- 
tion region. 



___ .---__-- 
(b) 

(d) 

(e) ii/ 

FIG. 34. Axisymmetric flow through a sudden enlargement (Re = 200): (a) Pressure contours; 
(b) vorticity contours; (c) velocity vectors; (d) streamlines; and (e) detail of streamlines in recircula- 
tion region. 

FIG. 35. Viscous flow about an airfoil: problem statement. 

FIG. 36. Viscous flow about an airfoil: finite element mesh. 
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1.2 

i 

0.8 

2P/P 

Finite element, Re=400 

-... , E.89 (“Z&-j) 

---- t=z.21 (n=200) 

__ t=3.09 in=280) 

FIG. 39. Viscous flow about an airfoil (Re = 400): pressures. 

FIG. 40. Viscous flow about an airfoil (Re = 10*):(a) velocity vectors; (b) streamlines; and 
(c) pressure contours. 

taken to be 10’~. One-point integration of the h-term was employed. We were interested 
in steady-flow solutions for comparison with the experimental and numerical results 
of MaCagno and Hung [57]. The calculations were performed in three sequences. 
In the first sequence, the initial conditions were quiescent and Re = 30. The sequence 
consisted of 60 time steps and a steady flow was achieved after approximately 30 steps. 
This flow was used as the initial condition for the second sequence in which Re = 60. 
This sequence consisted of 40 steps and a steady condition was attained after 20 steps. 
Results for this flow are presented in Fig. 33. With this flow as initial condition, 
the final sequence, in which Re = 200, was run for 90 steps. It took almost all this 
time for the region just upstream of section (iii) to become steady. Results are presented 
in Fig. 34. 

The overall flow patterns are in very good agreement with the experimental and 
numerical results of Macagno and Hung. The length scales of the trapped annular 
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FIG. 41. Viscous flow about an airfoil: Comparison of pressures at different Reynolds numbers. 

FIG. 42. Viscous flow about an airfoil: Results obtained at t = 1.2 after changing Re from 400 
to 106. (a) Velocity vectors; (b) streamlines; and (c) pressure contours. 
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FIG. 43. Viscous flow about an airfoil: Pressures obtained after changing Re from 400 to 108. 
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(a) Problem statement 

(b) Finite element mesh 

FIG. 44. Axisymmetric flow around a sphere: problem description and finite element mesh. 

eddies correlate particularly well. To study flows at higher Re would require refinement 
and extension, of the mesh downstream of section (iii), as the recirculation regime 
tends to stretch out considerably with increasing Re. 



FIG. 45. Axisymmetric flow around a sphere (Re = IO): (a) Velocity vectors; (b) pressure 
contours; and vorticity contours. 
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FIG. 46. Axisymmetric flow around a sphere: Comparison of finite element (0, x) and analytical 
(-) results. (a) Vorticity; and (b) pressure. 
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6.6. Viscous Flow About an Airfoil 

The problem statement is shown in Fig. 35. An NACA 0018 airfoil geometry is 
employed in the calculations. The finite element mesh is shown in Fig. 36. We 
employed unit chord length (i.e., L) throughout. 

Several runs were made with this mesh. The first, at low Reynolds number (i.e., 400), 
and quiescent initial conditions, nicely shows the diffusion of vorticity with the 
development of the boundary layer; see Figs. 37 and 38. Accompanying pressure 
profiles are shown in Fig. 39. 

Steady, high Reynolds number results, are presented in Figs. 40 and 41. The 
infinite-domain, potential flow, pressure profiles are presented in Fig. 41 for com- 
parison purposes. We conjecture that enlarging the domain and refining the leading- 
edge region of the mesh would bring the results in even closer agreement, although 
the pressure drop at the trailing edge is to be expected in a viscous computation. 

An Re = lo6 calculation was made using the Re = 400 solution at time 3.0986 
as initial condition. In this case the flow separated; sample results are shown in 
Figs. 42 and 43. At later times (not shown) the separation point and recirculation 
regime moved downstream. 

6.7. Axisymmetric Flow Around a Sphere 

The problem description and mesh are shown in Fig. 44. Initial conditions were 
assumed quiescent and the “mean-incompressible” treatment of the A-term was 
employed (see Remark 4, Section 2.8). 

Runs at Re = 10 and 40 were made; sample results are shown in Figs. 45 and 46. 
After the flows became steady, comparisons were made with the infinite-domain, 
analytical results of Dennis and Walker [15]. As can be seen from Fig. 46, vorticity (5) 
and pressure are in good agreement. (It is somewhat surprising that the results at 
Re = 40 are in such good agreement as our finite-domain model seems hardly ade- 
quate for this high a Reynolds number.) In Table II pressure-drag (C,), viscous-drag 
(C,), and total-drag (Cn) coefficients are compared with the results of Dennis and 
Walker. (The coefficients are normalized as follows: drag/(n@/2)2).) The agreement 
is quite good overall, but better at Re = 10 than Re = 40, as may be expected. 

TABLE II 

Comparison of Drag Coefficients for Flow Around a Sphere 

Coefficient 

Re = 10 Re = 40 

Present Dennis and Present Dennis and 
study Walker study Walker 

CP 0.774 0.785 0.347 0.368 
cv 1.419 1.427 0.520 0.536 
CD 2.194 2.212 0.868 0.904 
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7. CONCLUSIONS 

In this paper we have reviewed recent work, and presented new ideas and results, 
concerning the penalty/finite element formulation of the Navier-Stokes equations. 
The methods advocated herein have been shown to be effective and, at the same time, 
are computationally simpler and more versatile than FEMs proposed heretofore. 

Nevertheless, considerable research remains to be done. In particular, we look 
forward to: Improvements in the understanding and implementation of “upwind” 
treatments of convection terms; a more rigorous stability theory for the transient 
algorithms, including precise time-step estimates; more effective strategies for changing 
time steps without refactorizing; second-order accurate time-stepping schemes 
which involve only one forward reduction/back substitution per step; hybrid, non- 
linear/linear implicit transient schemes; effective iterative equation solving techniques; 
a more precise theory for determining the value of the penalty parameter; and the 
development of a rigorous mathematical theory of convergence and accuracy for the 
finite element/penalty-function formulation. 

In our own research, we plan to continue the development of the present techniques, 
and merge these procedures with structural/solid mechanics capabilities into a 
fluid-structure interaction computer program. Although we do not wish to engage 
in the controversy concerning the relative merits of finite difference and element 
methods, we do believe that there are compelling reasons for prefering finite elements 
in the area of fluid-structure interaction. These are due mainly to the intricate 
geometries which often characterize these problems, interface condition, and the 
high degree of development of finite element structural models. 
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